






5 Antipatterns, that slowed 
down our React/GraphQL app

(And how we fixed them)



What is GraphQL?

• query language for your API


• and a server-side runtime for executing queries



Advantages of GraphQL

• Ask for what you need, 
get exactly that



Advantages of GraphQL

• Describe what’s possible 
with a type system



Advantages of GraphQL

• Get many resources 
in a single request



GraphQL Basics



Queries - GraphQL Basics



Queries - GraphQL Basics





Fragments - GraphQL Basics





Mutations - GraphQL Basics



Antipatterns



Over-fetching

• Asking for too much data


• Makes your app slower than it has to be







Size: -31 %



Time: -22 %



Solution - Over-fetching

• Ask for only the data you need


• Update queries if you do not use a field in your app anymore



Why?



Misuse of fragments













Solution - Misuse of fragments

• Be careful with fragments


• Do not create a bloated fragments.graphql file


• Store fragments in same file as the queries that are using it


• When updating a fragment: check if other queries need this information



Under-fetching

• not asking for enough data in a query, forcing you to make a second query



Disadvantages multiple queries

• overhead for each request


• response compression will work better for the single request case.


• Several loading spinners


• Filtering, sorting and pagination cannot be easily handled server side



Goal: Get all issues from the Apollo client repository which are already 
assigned to someone.



Filter on the client Map over logins

Use each login 
in a component 
to query the 
data

Render the user



Map over assignees

Render the user



Solution - Under-fetching

• User filters, sorting and pagination on the server



Not using return values of mutation











Solution - Not using return values of mutation

• Use return values of mutation


• Better: use optimistic updates pattern



Not suitable caching library



– React Query

„Keep in mind that React Query does not support normalized 
caching.“ 



Normalized Cache

• Normalized Cache


• Data Storage


• Normalization Process


• Data Consistency


• Efficiency



Normalized Cache



Solution - Caching library

• Use a caching library that supports a normalized cache (if you benefit from 
it)


• Apollo Client


• URQL


• React Query


• Provide typename and id in query to make normalized cache work








